
Aaron Schultz
Software Developer
National Center for
Ecological Analysis and Synthesis

Kepler Architecture Solution
OSGI Bundles

July 16, 2008



2

Outline

OSGi Background
OSGi R4 Implementations
OSGi Bundles
OSGi Fragments
Exporting & Importing Packages
OSGi Class Space
OSGi Extensions
OSGi Services
Framework as hosted or host
Eclipse Plug-in Development Environment
Possible Usage of Bundles in Kepler
Reference



3

OSGi Background

OSGi Release 1 (R1): May 2000
OSGi Release 2 (R2): October 2001
OSGi Release 3 (R3): March 2003
OSGi Release 4 (R4): October 2005 / September 2006

 Core Specification (R4 Core): October 2005
 Mobile Specification (R4 Mobile / JSR-232): September 2006

OSGi Release 4.1 (R4.1): May 2007



4

OSGi R4 Implementations

Certified
Eclipse Equinox 3.2 (Apache License v2.0)

Default OSGi framework for Eclipse
Can be used to host an application or hosted by an application

Makewave Knopflerfish 2.0 (BSD license)
A Commercial implementation that was opened by Makewave
A Pro version is available for purchase 

ProSyst Software mBedded Server 6.0 (Eclipse Public License) 
Open version uses the Equinox framework and offers additional bundles
Commercial version uses ProSyst framework with many additional bundles

Samsung OSGi R4 Solution (Commercial)

HitachiSoft SuperJ Engine Framework (Commercial)

Non-Certified
Apache Felix (Apache License v2.0)

Does not fully implement the OSGi R4 spec

http://en.wikipedia.org/wiki/Apache_License
http://www.eclipse.org/legal/eplfaq.php#MEMAPPROVE
http://en.wikipedia.org/wiki/Apache_License


5

OSGi Bundles

OSGi Bundles are JAR files with standardized 
Manifests

Non-standard attributes are ignored by OSGi 
frameworks and can therefore be used for other 
purposes

See Section 3.2 “Bundles” of the OSGi version 4.1 sepecification for detail
on Manifest Headers and syntax

http://www.osgi.org/Release4/Download


6

OSGi Fragments

Fragments are bundles that are directly associated with a Host Bundle
Fragments are loaded with the same classloader as the host bundle
Fragments are often used to store platform specific resources making 
the inclusion and exclusion of these resources for different platform 
configurations very easy 

Screenshot: PDE Fragment Manifest Editor

See Section 3.14 “Fragment Bundles” of the OSGi version 4.1 sepecification 
for details on Fragments

http://www.osgi.org/Release4/Download


7

Exporting & Importing Packages

Exporting
A bundle specifies explicitly in the Export-Package 
manifest attribute which packages are available for use 
by other bundles (think public/private packages)
The usual practice is to simply export (make public) all 
the packages of a bundle unless there is a good reason 
not to – the exported packages define the API

Importing
Import-Package attribute allows a specific package to 
be used
Require-Bundle attribute allows all exported packages 
from the specified bundle to be used



8

OSGi Class Space

A class space is the set of all classes that are reachable from a 
given bundle's class loader

The parent class loader (normally java.* packages from the boot class 
path)
The bundle's class path (private packages)
Imported packages
Required bundles
Attached fragments

OSGi Version 4.1 Section 3.4 Class Loading Architecture

http://www.osgi.org/Release4/Download


9

OSGi Extensions

Plugin.xml
Extensions

Explicitly declare the extension points from other bundles 
that we are using in this bundle

Extension Points
Explicitly define the extension points available in this 
bundle with a name and an ID
Include documentation and examples about each 
extension point
Specify how many times the extension point can be 
extended (just once or by many different bundles)

Extensions get managed by the Extension Registry
Extensions are all registered before any classes are 
loaded, so there is no worry about timing/ordering of 
extensions



10

OSGi Extensions



11

The Equinox Extension Registry

To use the Equinox extension registry the bundle 
org.eclipse.equinox.registry needs to be installed in the OSGi 
configuration



12

Extension Attributes

An extension point defines a set of attributes that can be set by 
implementing extensions

Attribute values are available before any classes are loaded
If a class in the extension is to be executed the name of the 
class is stored in an attribute (called class in this example)



13

Executing Extension Classes

3 lines of code are needed in the bundle that defines the extension 
point to retrieve and execute classes supplied from extensions (lines 
8, 9, and 12 in the sample below)
No special Java code is needed in the extensions that are contributing 
to an extension point – only the xml definitions are needed



14

OSGi Services

Services can come and go dynamically during program execution
Because of this a developer has to take special care to check and 
handle each state of the bundle lifecycle



15

Framework as host or hosted

Framework as Host
The OSGi framework is run with a specific 
configuration of bundles
The configuration points to and optionally starts the 
specified bundles
In Eclipse an executable is used to run the Equinox 
bundle which then reads the configuration and 
loads all the bundles

Hosted Framework
A running application can call Equinox and load 
bundles according to a configuration defined by the 
application



16

Eclipse Plug-in Development Environment

Extension schemas and bundle manifests can be 
edited by hand in text editors although most 
developers prefer to use the Eclipse PDE
PDE provides a nice set of forms and automation 
tools that allow easy creation of bundle manifests, 
plugin.xml, and extension schemas
PDE auto detects classpaths and bundle 
dependencies for you
PDE is geared towards extension development and 
does not have strong support for services



17

Possible Usage of Bundles in Kepler

Nightly build using Maven
Requirement of not breaking the nightly build for too 
long
Possible plan of attack (perhaps not in this order exactly)

Start with the existing, monolithic Kepler+Ptolemy code 
base all in one bundle in one branch
Separate out jars
Separate out resources
Separate out Ptolemy
Separate out platform specifics into fragments
Separate out GUI
Identify and separate out components

Each bundle would have its own place in repository



18

Jar Libraries

Including Jars within Bundles
slightly slower
packages need to be exported from bundle for use by 
other bundles

Including Jars in an OSGi configuration as bundles is the 
preferred method (although there are other ways 
see Eclipse FAQ)

Currently there are 282 jars in Kepler (not all in use)
These would be separated out of the core and 
repackaged as bundles

 This involves adding a few OSGi headers to the 
manifest of each jar which could be easily 
automated
OR it is likely that the jars can be retrieved and 
built as OSGi bundles from a Maven repository

http://wiki.eclipse.org/FAQ_How_do_I_add_a_library_to_the_classpath_of_a_plug-in?


19

Very Abstract Diagram



20

References

Equinox Portal
OSGi in Practice (open book uses Felix Framework for examples)

Certified OSGi r4 implementations (OSGi Alliance)
Knoplerfish Pro (Makewave)
ProSyst Edition Comparison
OSGi Wikipedia page
Equinox QuickStart Guide
A Comparison of Eclipse Extensions and OSGi Services
Getting Started with Eclipse Plug-ins
Eclipse FAQs
OSGi Specification Version 4.1

Section 3 “Module Layer”

http://www.eclipse.org/equinox-portal/
http://neilbartlett.name/blog/osgibook/
http://www.osgi.org/Markets/Certified
http://www.makewave.com/site.en/products/knopflerfish_pro_osgi.shtml
http://www.prosyst.com/products/osgi_se_comparison.html
http://en.wikipedia.org/wiki/OSGi
http://www.eclipse.org/equinox/documents/quickstart.php
http://eclipse.dzone.com/articles/comparison-eclipse-extensions-and-osgi-services
http://www.eclipsezone.com/eclipse/forums/t97608.rhtml
http://wiki.eclipse.org/index.php/Eclipse_FAQs
http://www.osgi.org/Release4/Download

